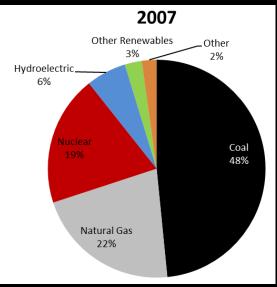
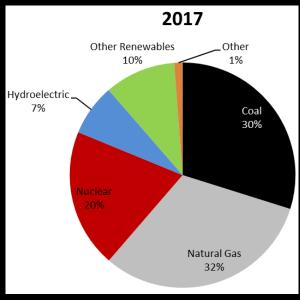
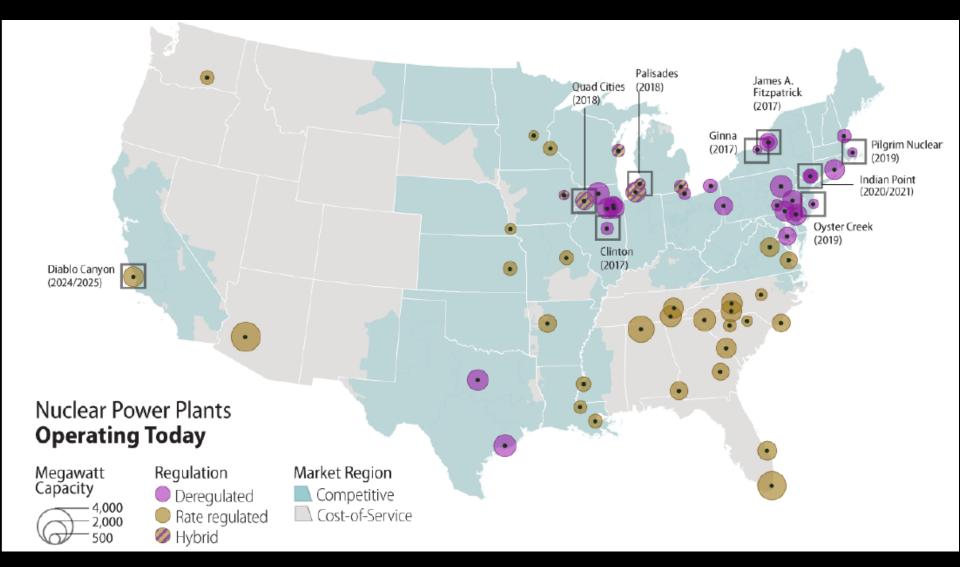
Nuclear Power and Global Warming

Steve Clemmer Director of Energy Research

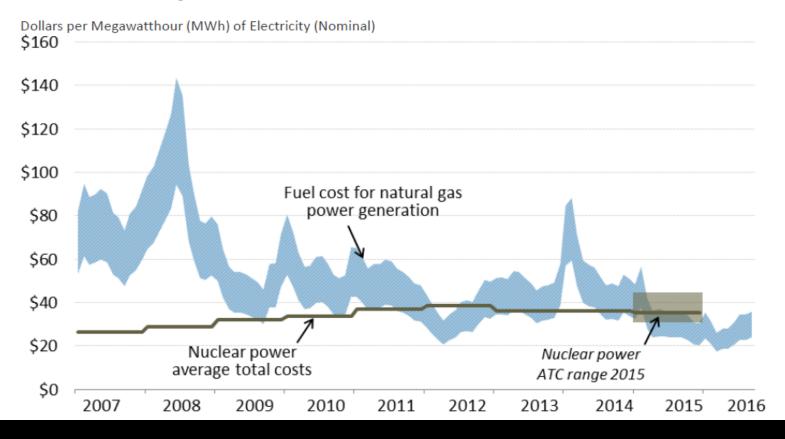

Pennsylvania Nuclear Energy Caucus June 19, 2018


Concerned Scientists

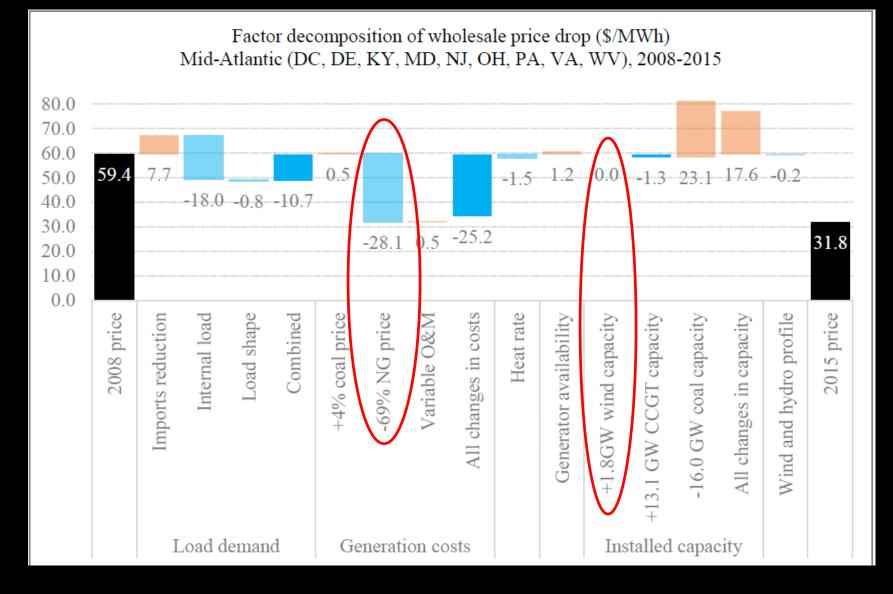
UCS Position


- Limiting climate impacts will require decarbonizing the U.S. power sector by 2050
- Nuclear's role depends on overcoming economic, safety, security and environmental risks
- Existing nuclear plants are at-risk of retiring early due to low natural gas prices that don't include the cost of carbon emissions
- Replacing nuclear with natural gas would undermine emission reduction targets
- Any support should be temporary and part of a broader strategy to reduce emissions and increase renewables and efficiency

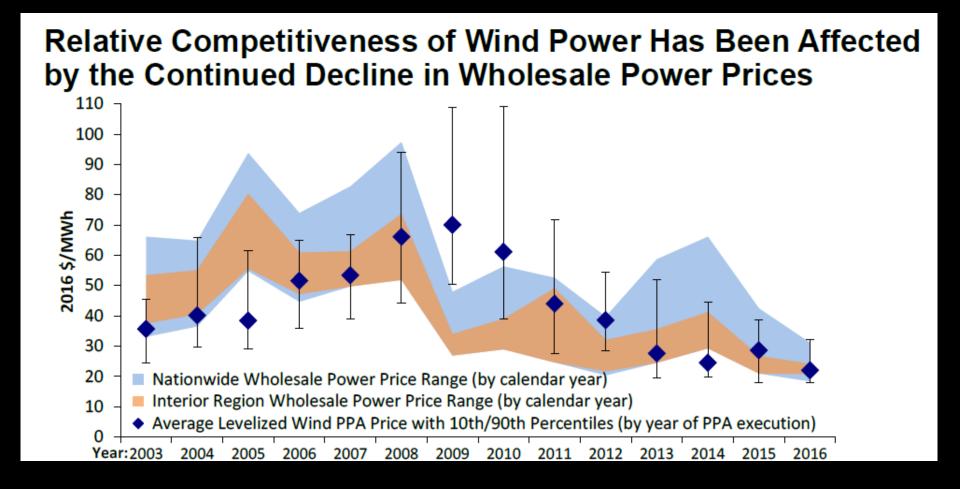
Changes in U.S. Electricity Mix



60 nuclear plants currently operating in US


Low natural gas prices is primary driver for early nuclear retirements

How Natural Gas Prices Impact Wholesale Electricity Prices, Compared with Nuclear Costs

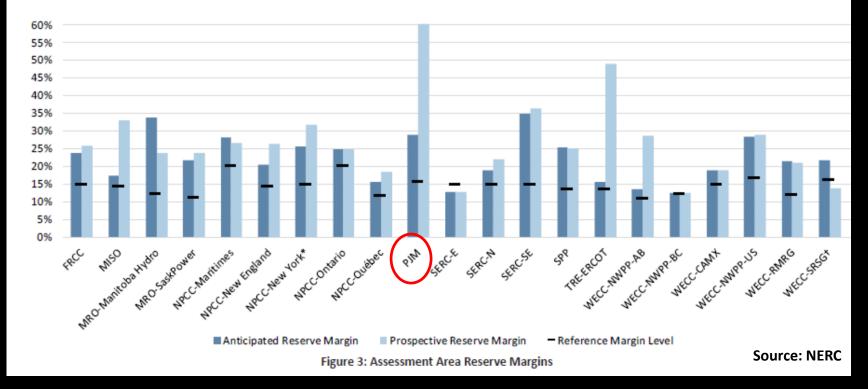


Source: Congressional Research Service, 2017

MIT: Drop in wholesale electricity prices in PJM due to low natural gas prices, not renewables

This problem is not unique to nuclear

A CO₂ price would make low carbon technologies more competitive and address a key market failure


Unsubsidized Levelized Cost of Electricity

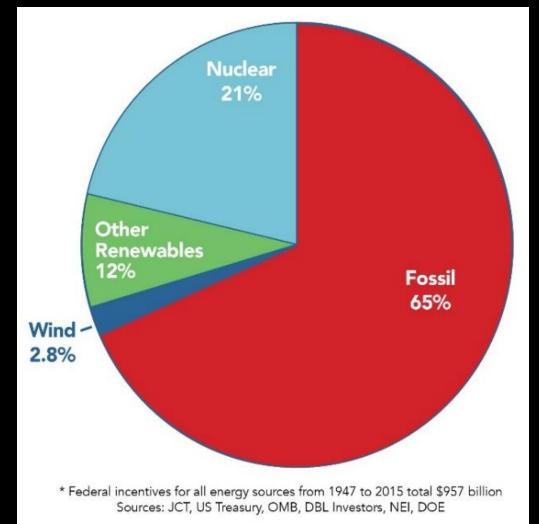
Source: Lazard, Levelized Cost of Electricity Analysis - Version 11.0, 2017

This is not about reliability and national security

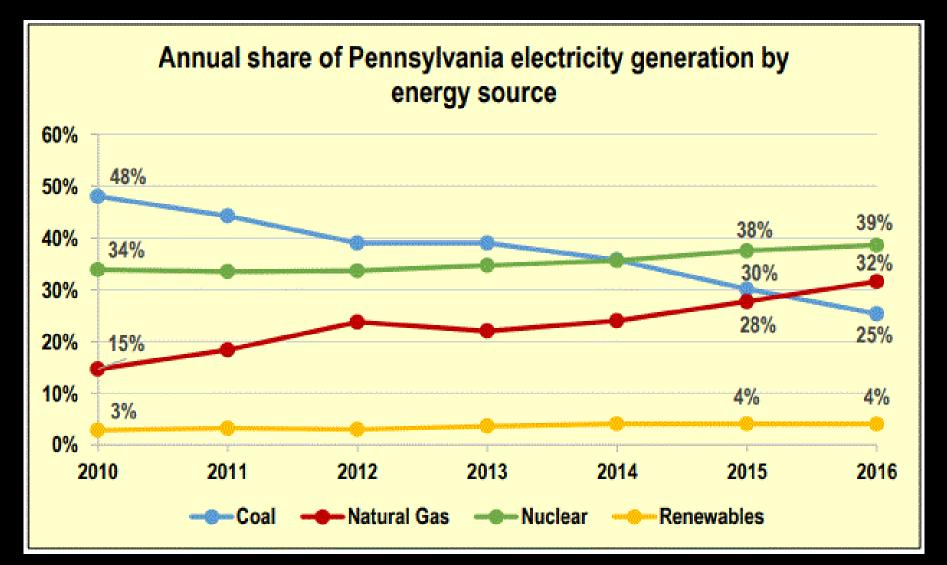
Assessment Area Reserve Margins

The 20 other assessment areas project sufficient short-term (2022) Anticipated Reserve Margins (see Figure 3). Table 1 on the following page provides the Planning Reserve Margins for 2018–2022.

PJM (6/1/18): "Our analysis of the recently announced planned deactivations of certain nuclear plants has determined that there is no immediate threat to system reliability. Markets have helped to establish a reliable grid with historically low prices. Any federal intervention in the market to order customers to buy electricity from specific power plants would be damaging to the markets and therefore costly to consumers."

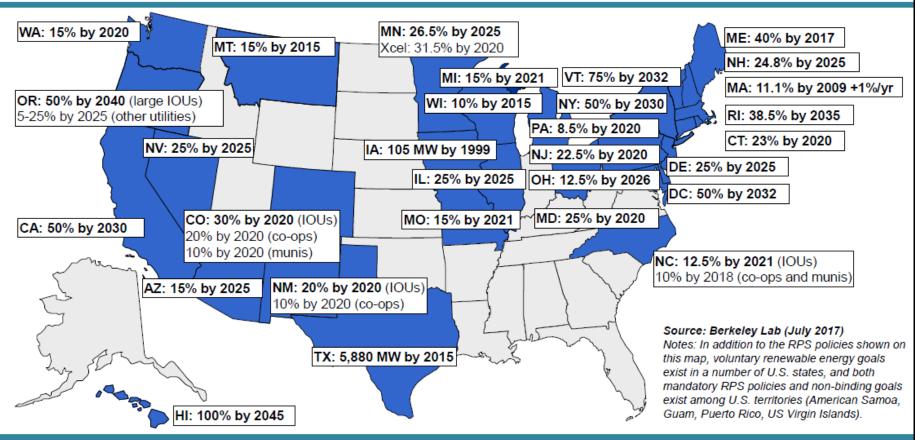

This is not about electricity resilience

Reliability Service	Wind	Solar PV	Gas	Coal	Nuclear			
Disturbance ride-through								
Note: For the following reliability services, yellow means the resource can provide the service but during								
many hours it may not be the most economic choice to do so.								
Reactive and voltage control								
Frequency regulation								
Flexibility								
Primary frequency response and inertial response to disturbances								
Resilience Service	Wind	Solar PV	Gas	Coal	Nuclear			
Note: For the following resilience services, score reflects risk of common mode unavailability reducing fleetwide output below capacity value during challenging time period.								
Cold weather resilience								
Hot weather resilience								
Fuel delivery resilience								
Cooling water resilience								
Impact on System Variability	Wind	Solar PV	Gas	Coal	Nuclear			
Impact on operating reserves and flexibility needs of other generators								
Key: Green is positive, yellow is medium value, red indicates that in most cases the resource does not offer that service.								


Source: AWEA

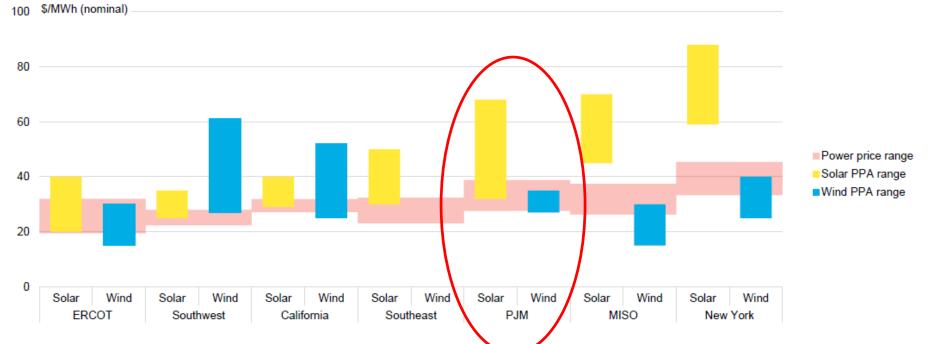
What about subsidies?

Federal Energy Incentives, 1947-2015

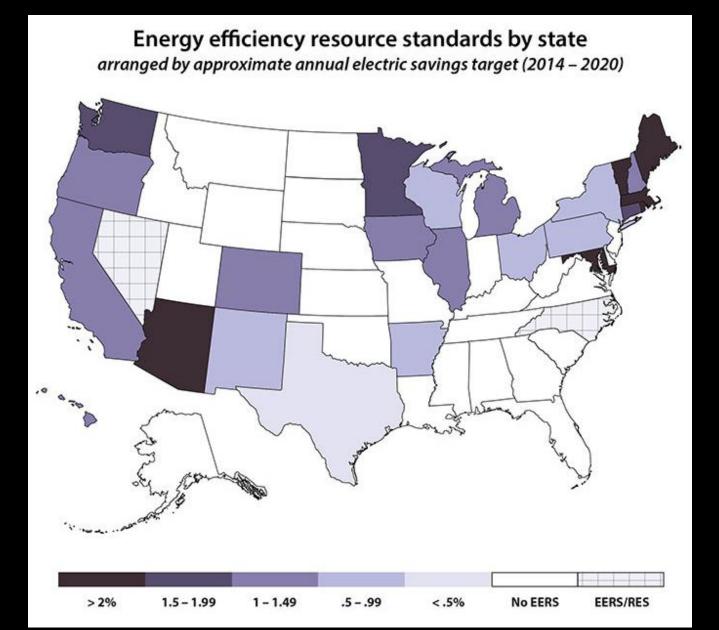

PA is under investing in renewables

Pennsylvania Public Utility Commission, 2016 AEPS Report

PA has a weak renewable standard

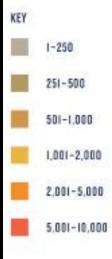

RPS Policies Exist in 29 States and DC Apply to 56% of Total U.S. Retail Electricity Sales

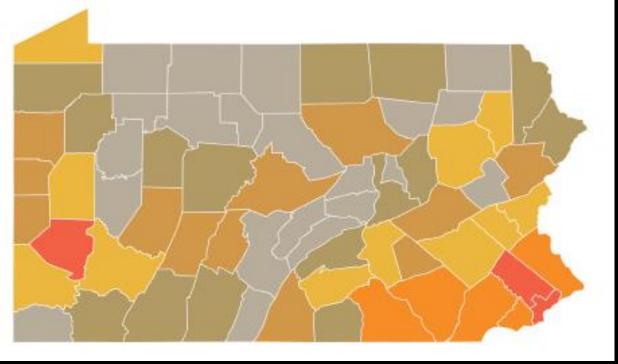
Wind and solar are affordable in PJM


Clean energy is no longer expensive: Wind, solar contracts are economic in parts of the U.S.

Wind, solar power purchase agreement price ranges (estimated) and power price ranges – by region

Source: Bloomberg New Energy Finance, SEC filings, interviews, analyst estimates Notes: MISO is the Midwest region; P.M. is the Mid-Atlantic region; SPP is the Southwest Power Pool which covers the central southern U.S.; NEPOOL is the New England region; ERCOT covers most of Texas. Wholesale power prices are based on market-traded futures for calendar year 2018 for select nodes within each region.


PA is lagging behind in energy efficiency



Renewables and efficiency are good for PA economy

Fig. 7: Heat Map of Clean Energy Employment by County

Policy Considerations for Existing Nuclear

- Carbon price is most effective and equitable policy
- Must be part of a broader strategy to reduce carbon emissions and strengthen renewables and efficiency policies
- Companies must open up books and demonstrate need
- Any financial support should be temporary and adjusted over time to protect consumers
- Plants should have strong safety records and plan to move waste to dry cask storage
- Companies should develop worker and community transition plans for eventual retirement

Extra Slides

Policies in NY, IL and NJ

	New York	Illinois	New Jersey
Nuclear ZEC price Cost Duration Price Adjustment Other	 \$17.48/MWh in 2017, \$29.15/MWh in 2027 \$483 million/yr in 2017-19 12 years (2017-2029) Increased by social cost of carbon; reduced by RGGI CO2 price and when market prices exceed \$39/MWh 	 \$16.50/MWh in 2017, \$20.50/MWh in 2027 \$235 million/yr 10 years (2017-2027) Increased by social cost of carbon; reduced when market prices exceed \$34.40/MWh Cost cap of 1.65% of 2009 retail electricity costs 	 \$10/MWh \$300 million/yr No sunset Requires owners to develop transition plans and study best practices for waste disposal
Renewable Energy RPS Wind Solar Storage	 50% by 2030 2,400 MW offshore by 2030 0.58% customer-sited by 2015 1,500 MW by 2025 	 25% by 2025 1,300 MW new 3,000 MW by 2030 New Community Solar and Solar for All Program 	 50% by 2030 3,500 MW offshore by 2030 2,000 MW by 2030; Overhaul of state solar incentives program 2,000 MW by 2030
<u>Energy Efficiency</u>	 Increase electricity savings target to 3%/year by 2025 1/3 of state goal to reduce greenhouse gas emissions 40% by 2030 	 Increased cumulative energy efficiency portfolio standard to 21.5% by 2030 for ComEd and 16% by 2030 for Ameren \$25 million/year for low- income programs 	 Requires utilities to invest in all cost-effective efficiency Estimated to quadruple energy savings and save consumers \$200 million/year

More explanation for slide 9

						Recent Reliability Events Where a Lack of
Reliability Service	Wind	Solar PV	Gas	Coal	Nuclear	this Service was a Significant Factor
Disturbance ride-through	Excellent voltage and frequency ride-through due to power electronics. isolating generator from grid distur- bances. Wind meels more rigorous ride-through requirement (FERC Order 661A) than other generators.	Can thanks to power electronics, but standards have prevented use of capability.	Generators often taken offline by grid disturbances.	Generators and essential plant equipment. like pumps and convey- or belts, often taken offline by grid, disturbances.	Generators and essential plant equip- ment, like pumps, often taken offline, by grid disturbances.	The failure of large conventional generators to ride- through a disturbance has been a contributing factor in several recent reliability events, including the DC and Florida blackouts.
Note: For the following reliability ser	vices, yellow means the resource can p	rovide the service but during many hours	it may not be the most economic choic	e to do so.		
Reactive and voltage control	Provides, and can provide while not generating by using power electron- ics.	Provides, and can provide while not generating by using power electron-	Must be generating to provide.	Must be generating to provide.	Must be generating to provide.	
Frequency regulation	Fast and accurate response. Can provide but often costly, particularly, for upward response. Provides on Xcel's system.	Fast and accurate response. Can provide but often costly, particularly, for upward response.	Provides.	MISO data show a large share of coal plants provide inaccurate regulation response.	Does not provide.	
Flexibility	often costly, particularly for upward	Fast and accurate response. Can provide but often costly, particularly for upward response.	Most gas generators are operated flexibly.	Many coal plants have limited flex- ibility, with slow ramp rates, high mini- mum generation levels, and lengthy start-up and shut-down periods.	Almost never provides.	
Primary frequency response and inertial response to disturbances	Wind regularly provides fast and accurate PFR in ERCOT today. Can be economic to provide upward response if curtailed. Can provide synthetic inertia if economic to do so.	Can provide downward frequency response today, can provide upward frequency response and fast power injection if curtailed.	Only 10% of conventional generators, provide sustained primary frequency, response.	Only 10% of conventional generators, provide sustained primary frequency, response.	Nuclear plants are exempted from providing frequency response, but they do provide inertia.	
Resilience Service	Wind	Solar PV	Gas	Coal	Nuclear	
	rvices, score reflects risk of common me	de unavailability reducing fleetwide outp	out below capacity value during challeng	ing time period.		
Cold weather resilience	Wind plants typically have high output during periods of extreme cold, as seen in ERCOT in 2011 and much of the country in 2014.	Solar plants have lower output during the winter.		Many coal plants failed due to cold in ERCOT in February 2011, polar vor- tex event in 2014, and other events.	Some failures due to extreme cold.	Polar vortex event in 2014 and ERCOT February 2011 event.
Hot weather resilience	In many regions wind output is lower, during hot summer days, though that, is accounted for when calculating wind's capacity value, in some re- gions, like coastal areas or mountain, passes, wind output is higher on hot summer days,	Solar plants typically have high output on hot summer days.	Gas generators experience large out- put de-rates when air temperatures, are high.	As noted below, coal plants expe- rience de-rates when cooling water, temperatures are high,	As noted below, nuclear plants expe- rience de-rates when cooling water, temperatures are high,	
Fuel delivery resilience	No fuel to deliver.	No fuel to deliver.	High gas demand can cause low gas, system pressure, fuel shortages. Can be mitigated with dual fuel capability, or firm pipeline contracts.	Rail congestion, frozen coal piles, and river conditions preventing barge delivery are all coal supply risks.	Large amount of fuel in reactor.	
Cooling water resilience	No cooling water.	No cooling water.	Gas combined cycle plants require cooling water, while combustion turbines do not.	Generators have been forced offline or de-rated due to insufficient cooling water or cooling water being too hot.	Generators have been forced offline or derated due to insufficient cooling water or cooling water being too hot.	
Impact on System						
Variability			Gas	Coal	Nuclear	
Impact on operating reserves and flexibility needs of other genera- tors	Modest increase in system variability at higher penetrations, though can mostly be accommodated through less expensive, slower-acting re- serves.	Modest increase in system variability at higher penetrations.	Contingency reserves; gas schedul- ing lead time can introduce inflexi- bility.	Contingency reserves; inflexibility imposes cycling burden on other resources.	Contingency reserves; inflexibility imposes cycling burden on other resources.	